Reflecting the Past, Shaping the Future: Making AI Work for International Development

We are in the midst of an unprecedented surge of interest in machine learning (ML) and artificial intelligence (AI) technologies. These tools, which allow computers to make data-derived predictions and automate decisions, have become part of daily life for billions of people. Ubiquitous digital services such as interactive maps, tailored advertisements, and voice-activated personal assistants are likely only the beginning. Some AI advocates even claim that AI’s impact will be as profound as “electricity or fire” that it will revolutionize nearly every field of human activity. This enthusiasm has reached international development as well. Emerging ML/AI applications promise to reshape healthcare, agriculture, and democracy in the developing world. ML and AI show tremendous potential for helping to achieve sustainable development objectives globally. They can improve efficiency by automating labor-intensive tasks, or offer new insights by finding patterns in large, complex datasets. A recent report suggests that AI advances could double economic growth rates and increase labor productivity 40% by 2035. At the same time, the very nature of these tools — their ability to codify and reproduce patterns they detect — introduces significant concerns alongside promise.

In developed countries, ML tools have sometimes been found to automate racial profiling, to foster surveillance, and to perpetuate racial stereotypes. Algorithms may be used, either intentionally or unintentionally, in ways that result in disparate or unfair outcomes between minority and majority populations. Complex models can make it difficult to establish accountability or seek redress when models make mistakes. These shortcomings are not restricted to developed countries. They can manifest in any setting, especially in places with histories of ethnic conflict or inequality. As the development community adopts tools enabled by ML and AI, we need a cleareyed understanding of how to ensure their application is effective, inclusive, and fair. This requires knowing when ML and AI offer a suitable solution to the challenge at hand. It also requires appreciating that these technologies can do harm — and committing to addressing and mitigating these harms.

ML and AI applications may sometimes seem like science fiction, and the technical intricacies of ML and AI can be off-putting for those who haven’t been formally trained in the field. However, there is a critical role for development actors to play as we begin to lean on these tools more and more in our work. Even without technical training in ML, development professionals have the ability — and the responsibility — to meaningfully influence how these technologies impact people.

You don’t need to be an ML or AI expert to shape the development and use of these tools. All of us can learn to ask the hard questions that will keep solutions working for, and not against, the development challenges we care about. Development practitioners already have deep expertise in their respective sectors or regions. They bring necessary experience in engaging local stakeholders, working with complex social systems, and identifying structural inequities that undermine inclusive progress. Unless this expert perspective informs the construction and adoption of ML/AI technologies, ML and AI will fail to reach their transformative potential in development.

This document aims to inform and empower those who may have limited technical experience as they navigate an emerging ML/AI landscape in developing countries. Donors, implementers, and other development partners should expect to come away with a basic grasp of common ML techniques and the problems ML is uniquely well-suited to solve. We will also explore some of the ways in which ML/AI may fail or be ill-suited for deployment in developing-country contexts. Awareness of these risks, and acknowledgement of our role in perpetuating or minimizing them, will help us work together to protect against harmful outcomes and ensure that AI and ML are contributing to a fair, equitable, and empowering future

Date 
Wednesday, September 5, 2018 - 9:15am

Last updated: September 05, 2018